MATH SOLVE

2 months ago

Q:
# Solve the system of equations given below. 8x+4y=16 7y=15-x

Accepted Solution

A:

1) first slove for X ( 7y=15−x) to solve this first subtract 15 from both sides -->

7y-15= -X ---> then multiply by -1 on both sides -----> -7y+15=x ( switch sides) so basically : x=−7y+15

2) Then Substitute x=-7y+15x=−7y+15 into 8x+4y=16 now solve steps below how to solve:

Start with the original equation ( 8x+4y=16)

Let x= -7y+15

8(−7y+15)+4y=16 ----> simplify ----> −52y+120=16

Now solve for Y ( −52y+120=16) steps:

−52y=16−120 ( subtract 120 from both sides) & simplify by 16-120=−104

−52y=−104

now isolate Y divide both sides by -52 ----> y=2

Substitute y=2 into x=-7y+15

x= -7(2)+15

x=1

your final answer :

x=1

y=2

7y-15= -X ---> then multiply by -1 on both sides -----> -7y+15=x ( switch sides) so basically : x=−7y+15

2) Then Substitute x=-7y+15x=−7y+15 into 8x+4y=16 now solve steps below how to solve:

Start with the original equation ( 8x+4y=16)

Let x= -7y+15

8(−7y+15)+4y=16 ----> simplify ----> −52y+120=16

Now solve for Y ( −52y+120=16) steps:

−52y=16−120 ( subtract 120 from both sides) & simplify by 16-120=−104

−52y=−104

now isolate Y divide both sides by -52 ----> y=2

Substitute y=2 into x=-7y+15

x= -7(2)+15

x=1

your final answer :

x=1

y=2